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ABSTRACT

e
) #

This paper presents the efforts of Mechanical Dynamics, Inc. in obtaining a general formulation for flexible
bodies in a multibody setting. The efforts being supported by MDI, both in house and externally are
summarized. The feasibility of using lumped mass approaches to modeling flexibility in a multibody dynamics
context is examined, The kinematics and kinetics for a simple system consisting of two rigid bodies connected
together by an elastic beam are developed in detail, Accuracy, efficiency and ease of use using this approach are
some of the issues that are then looked at.

The formulation is then generalized to a "superelement” containing several nodes and connecting several bodies.
Superelement kinematics and kinetics equations are developed.

The feasibility and effectiveness of the method is illustrated by the use of some examples illustrating
phenomena common in the context of spacecraft motions.
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SCOPE OF THE PRESENTATION

» PROFILE OF MECHANICAL DYNAMICS, INC.

+ MDI EFFORTS TO MODEL FLEXIBILITY
+ LUMPED MASS APPROACHES TO FLEXIBILITY

+ EXAMPLES
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MDI EFFORTS IN FLEXIBILITY

* INTERNAL R&D

* LUMPED MASS APPROACHES TO FLEXIBILITY

+ EXTERNAL R&D

* UNIVERSITY FUNDED RESEARCH IN MODAL APPROACHES
* INTERFACE TO FEA PROGRAMS

* NASTRAN

* ANSYS
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LUMPED MASS APPROACH TO FLEXIBILITY
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EXPLODED VIEW OF INITIAL CONFIGURATION
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BEAM DEFORMATION DURING MOTION
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TRANSLATIONAL DISPLACEMENT COMPUTATION
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18S12= A6 [ R, +AZGI'.2 -Rq 'AlGl:l ]
1422 =183 -1L

1L = (L o0o0)T

250



- MECHANICAL DYNAMICS, INC. -

ANGULAR DISPLACEMENT COMPUTATION

SPACE 1-2-3 ANGLES ARE USED FOR MEASURING ANGLES

Cz C3 Sl Sz C3- S3 Cl Cl Sz C3 + S3 Sl
AZ'Z = Cz S3 Sl Sz S3 - C3 Sl Cl Sz S3 + C3 Sl
-S; 81 C; €1 G

B, =SIN-l(.ay)
IF B, # [1/2 THEN

B3 ARCTAN2(312+ 313’313-2‘22) - Bl

ELSE IF B, = [1/2 THEN

B; = ARCTAN2(a, ay)
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VELOCITY COMPUTATION

WVyy = @Vy - W) X Sy

1¥22= AV [ AS(R;-Ry)-Alo~n
- !&“’.J(A'Htl + AJGR, - AJGR,) ]

- —— -

W) =W -

1912 = AU[A‘HQI'QJ]
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FORCE COMPUTATION

FORCES AT ORIGIN OF COORDINATE SYSTEM ON REF, FRAME 1

1E,= -[ K1 142+Kpp 812l
-[C111¥22+C 12 2012 ]

112= -[ K21 1422+K22 B2l
-[C21 1¥22+C 2 19121

K IS THE STANDARD MATRIX FOUND IN ANY STRUCTURAL ANALYSIS TEXT

FORCES AT ORIGIN OF COORDINATE SYSTEM ON REF, FRAME 2

SINCE THE BEAM IS MASSLESS, APPLYING LAWS OF EQUILIBRIUM :

i“:l'l'i‘:z =6

1E1=-1E,

'_fl + '—f‘2+ §12X i‘:z = 6

1L1=-[1T2+ 152 1E2]
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* DIRECTLY RELATED TO DEGREE OF DISCRETIZATION

+-METHOD DOES NOT YIELD WRONG ANSWERS

* DEGREE OF DISCRETIZATION DEPENDENT ON FREQUENCY

CONTENT DESIRED. ADAMS/MODAL WILL COMPUTE

EIGENVALUES AND EIGENVECTORS FOR ANY ADAMS MODEL.
CAN ANIMATE LINEAR MODEL USING SELECTED SET OF MODE
SHAPES AND FREQUENCIES.
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FLEXIBLE BODY DYNAMICS
Benchmark Problem #1: Uniform Cantilever Beam Spin-up

The inset of Fig. 1 shows a uniform, homogeneous, cantilever beam supported by a circular hub of
radius r. At time t = 0, the system is at rest in a Newtonian reference frame and the beam is undeformed.
Subsequent to this initial time, the hub is made to rotate about a vertical axis X — X, passing through the
center of the hub, in such a way that Q, the angular speed of the hub, is given by

() = (2/5) [t - (1.5/7) sin(ﬂ/7.5)] rad/sec 0 <t <15 sec
~ 16 rad/sec t > 15 sec

which represents a smooth transition from zero hub motion to a constant angular speed of 6 rad/sec. The
beam has a length L, Young’s modulus E, shear modulus G, mass per unit length p, and a circular cross-
section of area A and area moment of inertia I.

The solid line in the figure below shows the time history of the displacement of the beam tip. in the
plane of rotation, relative to a line fixed in the hub and originally parallel to the centroidal axis of the beam.
This result was obtained using the theory and algorithm presented in Refs.{1] and [2] with three assumed
modes and the following parameter values

r=0m p:l.?kg/m
L=10m A=4x10""m?
E=7x10°N/m®> G=3x10"N/m® TI=2x 10" m*

All external forces were neglected and the assumed modal functions were chosen to be equal to the first three
eigenfunctions of an identical uniform cantilever beam with its root fixed in a Newtonian reference frame.
The numerical integration was carried out using a 4th — 5th order, variable step-size, Runge-Kutta-Merson
method with a print step and initial time step of .03 seconds and an error tolerance of 1 x 1078, The dashed
line result was produced with an algorithm based on the assumed-mode formulation utilized in most flexible
multibody programs. This result was verified by Fidelis Eke [(818) 354-2916] at Jet Propulsion Labs using
DISCOS.
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Fig.1 Spin-up of Homogensous Uniform Cantilever Beam

{1} Ryan, R.R,, “Flexibility Modeling Methods in Multibody Dynamics,” Ph.D. dissertation, Stanford
University, Available frem University Microfilms, Ann Arbor, Michigan, 1986.

[2] Kane, T.R., Ryan, R.R., and Banerjee, AK,, “Dynamics of a Cantilever Beam Attached to a Moving
Base." Journal of Guidance. Control, and Dynamics, Vol.10, No.2, March-April, 1987.
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« THIS METHOD IS USABLE FOR SMALL TO MEDIUM SIZE PROBLEMS
( MEDIUM = 300 RIGID AND FLEXIBLE DOF )

* FOR LARGER PROBLEMS IT MAY PROVE TO BE MORE CPU INTENSIVE
THAN DESIRABLE.

« THE CPU TIME TAKEN FOR A SIMULATIONIS LINEARLY

PROPORTIONAL TO THE NUMBER OF FLEXIBLE BEAMS IN
THE SYSTEM
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EASE OF USE

« THE RESULTING PROGRAM IS EXTREMELY EASY TO USE.

« USERS DO NOT NEED STRONG FEA BACKGROUND TO CREATE
MODELS OF STRUCTURES

« RECOGNITION AND SELECTION OF PROPER MODES IN AN ART.
THE RESULTS ARE ONLY AS GOOD AS THE SELECTED MODES.
DIFFICULTY ALLEVIATED IN THIS APPROACH.
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GENERALIZATION TO SUPERELEMENTS

(BASE PART)

NODES

* LOCATION OF NODES 2, 3,4 WRT. TO A KNOWN
REFERENCE FRAME

* MASS AND INERTIA PROPERTIES FOR EACH NODE
OBTAINED FROM MASS MATRIX.

LOCATION AND ORIENTATION OF COORDINATE SYSTEMS

20ONPART 2 2'ONPART 1
3 ON PART 3 3 ONPART 1
4 ON PART 4 4' ON PART 1
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ASSEMBLY

« PRE-TENSION AND INITIAL DISPLACEMENTS
AT CONNECTION POINTS 2-2', 3-3', 4-4'

FLEXIBILITY PROPERTIES
. STIFFNESS MATRIX
« DAMPING MATRIX

DISPLACEMENT COORDINATES

14 = [1422 1433 184417

B =108 Bys Baal”

VELOCITY COORDINATES
_ T
1Y =[1¥22 1¥33 1¥a4]
=[ @y 1933 1Q4417F
19 1922 1933 18449

FORCE DEFINITION AT COORDINATE SYSTEMS 2, 3, 4

E =[,E2 1E3 1E4]7

1T =0,T2 113 1I4]T
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FORCE COMPUTATION AT COORDINATE SYSTEMS 2, 3, 4

1E = -[Ki1 14 +K12 81
[C111¥Y+C 101 +Ey

1L = -[ K21 14 +Ky B 1]
-[C21 1Y +Co 101 +Tp

FORCE AT COORDINATE SYSTEM 1

— -

Fl + F2+ F.3+ i‘:4 =6

1E1=-[1E2+ 1E3+ 1E4]

'_f1+ T‘2+ T‘3+ 'f‘4+ §12X i52 +§13x i:3+§14X i:4 =0
1Ly =-[;FE,+ 1E5+* 1Eq]

- [1512 1E2+ 1513 1E3+ 1514 1E4]
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